Reduction of stable differential–algebraic equation systems via projections and system identification
نویسندگان
چکیده
Most large-scale process models derived from first principles are represented by nonlinear differential–algebraic equation (DAE) systems. Since such models are often computationally too expensive for real-time control, techniques for model reduction of these systems need to be investigated. However, models of DAE type have received little attention in the literature on nonlinear model reduction. In order to address this, a new technique for reducing nonlinear DAE systems is presented in this work. This method reduces the order of the differential equations as well as the number and complexity of the algebraic equations. Additionally, the algebraic equations of the resulting system can be replaced by an explicit expression for the algebraic variables such as a feedforward neural network. This last property is important insofar as the reduced model does not require a DAE solver for its solution but system trajectories can instead be computed with regular ODE solvers. This technique is illustrated with a case study where responses of several different reduced-order models of a distillation column with 32 differential equations and 32 algebraic equations are compared. 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
Comparative study on solving fractional differential equations via shifted Jacobi collocation method
In this paper, operational matrices of Riemann-Liouville fractional integration and Caputo fractional differentiation for shifted Jacobi polynomials are considered. Using the given initial conditions, we transform the fractional differential equation (FDE) into a modified fractional differential equation with zero initial conditions. Next, all the existing functions in modified differential equ...
متن کاملStable Underlying Equations for Constrained Hamil- tonian Systems
Constrained Hamiltonian systems represent a special class of differential algebraic equations appearing in many mechanical problems. We survey some possibilities for exploiting their rich geometric structures in the numerical integration of the systems. Our main theme is the construction of underlying equations for which the constraint manifold possesses good stability properties. As an applica...
متن کاملNonlinear Model Reduction of Differential Algebraic Equation (DAE) Systems
Most process models resulting from first principles consist of not only nonlinear differential equations but also contain nonlinear algebraic equations, resulting in nonlinear DAE systems. Since large-scale nonlinear DAE systems are too complex to be used for real-time optimization or control, model reduction of these types of models is a strategy that needs to be applied for online application...
متن کاملA New Near Optimal High Gain Controller For The Non-Minimum Phase Affine Nonlinear Systems
In this paper, a new analytical method to find a near-optimal high gain controller for the non-minimum phase affine nonlinear systems is introduced. This controller is derived based on the closed form solution of the Hamilton-Jacobi-Bellman (HJB) equation associated with the cheap control problem. This methodology employs an algebraic equation with parametric coefficients for the systems with s...
متن کاملBrenstien polynomials and its application to fractional differential equation
The paper is devoted to the study of Brenstien Polynomials and development of some new operational matrices of fractional order integrations and derivatives. The operational matrices are used to convert fractional order differential equations to systems of algebraic equations. A simple scheme yielding accurate approximate solutions of the couple systems for fractional differential equations is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005